

Title Page

CS495 Spring 2018

 Software Design Document & Presentation

Juked

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

02/06/2018

Revision Page

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

1

Revision History
Revisioner: Comment: Date:

1 Francisco Rovelo Added Title, Revision, Contents page, & Format 02/06/18

2 Laura Phillips Added Introduction 02/08/18

3 Mohammed Rahman Added function , Non function, Comparison 02/16/18

4 John Mills Added project description 02/16/18

5 Mohammed Rahman Updated non functional requirement 02/25/18

6 Noah Patton Reviewed overall paper 02/16/18

7 Noah Patton Made powerpoint presentation 02/25/18

8 John Mills Added class diagram and Use cases 02/26/18

9 Laura Phillips Editing formatting and TOC 2/26/18

10 Laura Phillips Added activity diagrams 2/26/18

11 Laura Phillips Updated definitions 2/26/18

12 John Mills Updated class diagram 3/1/18

13 All Final pass before first submission 3/1/18

14 Mohammed Rahman Added observations, reviewed the paper 3/1/18

15 Laura Phillips Activity diagram descriptions 3/1/18

16 Noah Patton Added use case description 3/1/18

17 John Mills Added class diagram description 3/1/18

18 Noah Patton Reviewed function and nonfunctional 3/1/18

19 Laura Phillips Reviewed additions to § 3 & 6 3/1/18

20 Francisco Rovelo Reviewed/edited/added information to § 4 3/1/18

21 Laura Phillips Added prospective database information 3/1/18

22 Laura Phillips Edited requirements document using feedback 3/28/18

23 Laura Phillips Uploaded all team members’ sequence diagrams 3/28/18

24 Francisco Rovelo Detailed join/create lobby sequence diagrams 3/28/18

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

2

25 Laura Phillips Detailed skip song/remove song/has voted
diagrams

3/29/18

26 Mohammed Rahman Added use cases 3/29/18

27 Noah Patton Added detail to sequence diagrams 4/2/18

28 John Mills Updated class diagram 4/3/18

29 Laura Phillips Updated table of contents, reviewed for submit 4/3/18

Table of Contents
0.0 Title Page 0
1.0 Revision Page 1
2.0 Table of Contents 2
3.0 Introduction 3
 3.1 Purpose 3

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

3

 3.2 Goals 3
 3.3 Definitions 3
4.0 Project Description 4-5
 4.1 Feature Overview 4
 4.2 Generating Lobby 4
 4.2-A Selecting Available Music Median 4
 4.2-B Host Options 4
 4.3 Guest Menu 4
 4.3-A Searching and Selecting 4
 4.3-B Upvoting and Downvoting 5
5.0 Functional & Non-Functional Requirements 5
 5.1 Functional Requirements 5
 5.2 Non-Functional Requirements 5
6.0 Functionality Comparison 6
7.0 Analytical Diagrams and Description 8-16
 7.1 UI Mockups 8
 7.2 Class Diagram Description 9-10
 7.3 Use Case Diagram and Descriptions 11-14

7.4 Activity Diagrams 15-19
7.4-A Splash Screen Activity Diagram 15
7.4-B Host Home Page Activity Diagram 16
7.4-C Guest Home Page Activity Diagram 19

7.5 Prospective Database Setup 20
8.0 Sequence Diagrams

8.1 - Create Lobby 21
8.2 - Create Playlist 22
8.3 - Create User 22
8.4 - User Joins a Lobby 23
8.5 - Search For Song 24
8.6 - Add Song to Queue 25
8.7 - Remove Song from Queue 25
8.8 - Host Skips a Song 26
8.9 - Check If User Has Voted 27
8.10 - Leave Lobby 28
8.11 - Destroy Lobby 29

3.0 Introduction
 3.1 Purpose

Juked is an application to give the power of music to the people. When a group
of friends are together, the task of picking the music they listen to typically falls to one
person. The host of a party or gathering can’t relax and enjoy their company because of
the stress of constantly choosing music everyone will enjoy. Juked allows the host to
share this responsibility by allowing the entire group to pick their favorite songs and vote
on their friends’ choices so everyone gets to listen to music they like. Aside from making

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

4

a party more interactive, the app also provides opportunity for people to venture out of
their comfort zone. It also possible for people to taste something new they were not
aware of before, and prevents one person from monopolizing the party.

 3.2 Goals

Our goals for Juked are to produce an application that is useful, user friendly,
convenient, and fun. We want Juked to be intuitive and easy to understand so that any
group of people can make use of it. We envision this application to be useful in everyday
life, especially for young adults and teenagers that have frequent get togethers with
friends. Having a clean and clear UI will help accomplish these goals, so that parties can
be joined easily and songs can be found quickly and concisely. When an application is
cluttered or hard to navigate, users are easily turned away. The application has potential
for growth because once a party host decides to use Juked, any party guests that wants
to have input on the the song selection will also download Juked. Going forward, all of
those party guests can suggest Juked at a different party, where all of those attendees
will download the application, and so forth.

3.3 System Scope
 Juked is an Android based application. It uses a NodeJs server and a MySQL
database. Juked allows partygoers to select song to be played. It allows the users to up
or down vote song selection, making it an interactive get together. Juked allows host to
have input from the guests, helping to make a more successful party.

 3.3 Definitions

● API - Application programming interface
● Guest - Guest of a party, can join a lobby and request songs
● Host - Party host, has guest privileges and administrative controls of party
● Lobby - The host creates a lobby where the host and guests can select options

and view the songs that have been chosen by the other guests.
● Queue - List of songs chosen by the party guests and host, played in a first in,

first out order
● Soundcloud - 3rd party music listening application, hosts independent music
● Spotify - 3rd party music listening application, requires premium (paid)

subscription
● UI - User interface, what is displayed on the screen that the user will interact with

to use the application
● UX - User experience, the experience a user has while interacting with the

application. The design and layout of the app should be chosen with the user
experience in mind.

4.0 Project Description
Juked will allow one phone to act as a host, and let anyone connected to that host’s lobby to
choose the songs that will be played from the host phone. When the host creates a lobby, the

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

5

app assigns it a four digit number from 0000 to 9999. The host can let the party goers know the
generated lobby code. The guests then use that number to join the lobby. Every user gets to
choose one song in a given turn. Each guest may upvote or downvote any song in the queue
and the top voted song goes to the top of the queue, while negative voted songs get pushed to
the bottom (hence it is collaborative). If a song obtains a low enough score it is removed from
the queue. If the host forgets to close out the lobby at the end of the party, the app’s back end
automatically closes the room after a certain amount of inactive time.

4.1 Feature Overview
Guests have minimal features, of which include selecting songs, viewing the

party’s song history, and voting up/down songs. The host has all the perks of a user, but
more administrative powers.

4.2 Generating Lobby

At the main screen, the host chooses the option to host a lobby. A random four
digit number is assigned to the host to give to guest. If the app becomes popular we will
increase available lobby numbers exponentially.

4.2-A Selecting Available Music Median

The host will also be given the option to limit the guest to choose from just
Spotify, just Soundcloud, or both (possibly YouTube if time allows). The host will
be required to have the Spotify or Soundcloud application downloaded to their
phone in order to use their streaming services in Juked. Additionally. Spotify will
only be available for premium Spotify users.

4.2-B Host Options

The host is allowed to skip songs or delete songs that he deems not fit in
the queue. The host can also pause and resume playback as necessary.

4.3 Guest Menu

Once a guest chooses to join a lobby, they will be prompted to enter the four digit
code that the host gives out. Once in the lobby, the guest will choose both a nickname
and an avatar. Avatar options will include either a pre-uploaded one(default avatar) or
upload one from the device

4.3-A Searching and Selecting
The guest will have a search bar on the guest screen to search for songs.

The search uses either Spotify’s search or Soundcloud’s to pull up the closest
match to the song being typed. The guest then has the opportunity to pick the
song and it will automatically be added to the queue.

4.3-B Upvoting and Downvoting

The guests will also have the ability to see songs that are in the queue.
They can upvote or downvote any and all songs, but may only vote on each song
once. The more upvotes a song gets, the higher it will move in the queue. If a

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

6

song gets 5 (or other predetermined amount) or more downvotes, it is removed
from the queue entirely.

5.0 Functional & Non-Functional Requirements

5.1 Functional Requirements and Priority Levels

a. High- The app will give user the option either to create a lobby or join a lobby.
b. High- User will be able to select a song from Spotify. In the future, we will be

open to adding more platforms such as Soundcloud, Youtube or Google Play
Music - (Low priority).

c. High- User will be able to upvote or downvote a song. The user can change the
vote at any time by either pressing the same button to cancel the vote or
pressing the opposite button to do the opposite action. However, the user will
only get one vote per song. A user may change their vote from up to down and
vice versa, but they cannot upvote a song twice.

d. High- User will have the opportunity to add another song selection to the queue
after their previously chosen song has been played.

e. Med- Host will be able to remove a song from the queue. This will help to ensure
that host maintains absolute control over the playlist.

f. Med- Lobby codes will be (at least) 4 digits. If the app becomes popular, this
number can change to add lobby options.

g. High- Host may not create more than one lobby at a time. Currently we have only
10,000 possible lobby codes. This would ensure better usage of limited
resources.

h. High- User may not choose more than one song in each turn. If the user has a
song selection in the queue, they cannot make another selection until their first
one has been played or voted out.

i. Low - If a lobby has an empty queue for a certain amount of time, the lobby will
be destroyed and all users removed, including the host. Since the app only
allows 10,000 lobbies at present, this will make sure we are using the number of
available lobbies efficiently.

j. Medium - Delete any system cache after the party closes ensuring data security.

5.2 Non-Functional Requirements and Priority Levels
a. High- Keep track of all the lobbies created. The lobby numbers have to be

unique, otherwise user’s songs may be played in a different room then they are
in.

b. Medium- The system must use resources efficiently. Given the possible number
of rooms, votes and actions at once, keeping things efficient is a must.

c. High- System need to be able to use Spotify API/SDK. Spotify has the largest
market share of the music streaming industry and will provide a large library of
songs for users to select from.

d. Medium - Have a smooth user experience that is clear and easy to follow.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

7

6.0 Functionality Comparison

We view our biggest competitors of the market to be Spark.dj, Flo, Troppo, Festify,
Jukestar. Many of these applications are only available on iOS or are web based applications.
Since our application will be developed for Android, this diversifies our audience from the users
of many other apps. Most of the apps other than Flo do not have spam prevention, which stops
users from adding the same song multiple times. Juked prevents this by allowing each user one
song in the queue at a time. While Flo also prevents this, it does not allow up or down votes to
affect playback order. Troppo allows to play song from guests own phone via wifi, which can be
a potential security hazard or violate file sharing guidelines. Juked is also one of few apps that
will prevent guests song choices form affecting their auto generated playlists by using Spotify in
a private session. Spotify has algorithms that use listening history to build playlists and song
mixes based on a user’s taste in music, and using Juked will not effect these algorithms. One
shortcoming of Jukestar is that the application requires too separate applications, one for a host
and one for a guest. The host application is only for party management, requiring a host to also
download the guest application in order to add music.
Overall, Juked intends to have better functionality and user experience in comparison to other
apps.

App/Req Platform Password
Protection

Song
Selection

Popular
song

Spam
Prevention

Affect Host’s
personal
ranking?

Spark.dj Apple No Spotify Up/Down
Vote

No No

Flo Apple No SoundCloud/S
potify

No Host
permission

Yes

Troppo Android Share via Wifi User Device,
online

Up/down
vote

No N/A

Festify Web based Party code Spotify Up/down
vote

No N/A

Jukestar Apple/
Android

Yes Spotify Up/ Down
vote

No No

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

8

Juked Android Random 4
digit code

Spotify Up/Down
Vote

Yes No

7.0 Analytical Diagrams and Description

7.1 - UI Mockups

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

9

The UI/UX is designed to remain
minimalist while maintaining a
large amount of functionality on as
little screen space as possible.
One of the key points of our app vs
the competition is is ease of
usability.

We hope to use a form of
javascript for responsive UI.

7.2 Class Diagram

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

10

We currently plan on using five classes for this app. As seen, a user class
will be a base class. It will hold a userName (or nickname) and a key that
identifies it uniquely. The user class will currently have methods that allow them
to search songs, select a song from the search results, and also show other
users that are currently in the lobby and the song that they chose. A host will be
the same as a user but have a boolean field that determines if it is a host. The
host will also be able to kick a user if he has not been cooperating for any
reason. A song class will create a song object consisting of only items that
pertain to being played. Some of these are the song name, number of votes, the
balance of the votes, and also the URI to Spotify or Soundcloud. The playlist
class will hold the songs that users have chosen to be played. This is also where
the methods that control how the songs are moved up, down, in, and out of the
queue. The playlist will be a queue that is comprised of song objects, and has
methods that allow for the changing of objects in the queue. Lastly, the lobby will
hold all of the other objects. The lobby class creates the user, host, and playlist.
It also holds a lobbyID that is stored in a database to uniquely identify that lobby.
The splash screen class will hold the opening screen and a few methods. These
methods include createLobby, joinLobby, and authenticateLobbyCode. The two
songFragment classes have been added that display the current playlist of songs
and history of songs. A Search class has been added that will search for the
song, and consult the playlist class to be added into the queue. Search will read

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

11

in a users input and query the spotify api, which returns a json object. The json is
parsed and sent to a Song object. The song object is sent to the
songFragmentScreen where the user may choose the song. Once the song has
been chosen, it is sent to the playlist class to await being played.

7.3 Use Case Diagram

Use Cases:

1. Use Case: Create a lobby.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

12

Description: Host creates a lobby so that users can join the party.
Actors: Host, Server
Main Success Scenario:

a. Host initiates creating a lobby.
b. Server searches for existing lobby. Creates a lobby and return its number to host. Host

then passes that number to the guests for them to join.

2. Use Case: Enter’s a lobby.
Description: Guest users enter an existing lobby.
Actors: Guest, Server.
Main Success Scenario:

a. Guests manually receives a lobby code from the host, enters that number and a
nickname to join the lobby.

b. Server updates the database with the user’s nickname in the respective lobby.

3. Use Case: Creates a lobby number.
Description: Server creates a unique lobby number.
Actors: Server.
Main Success Scenario:

a. Upon receiving a request from host, the server will search through its existing
lobby number and return a unique number.

4. Use Case: Create a playlist.

Description: Playlist actions in various stage of the lobby.
Actors: Server.
Main Success Scenario:

a. Backend work by the server.
b. The playlist is created the moment the lobby is created, updates during the party

and is destroyed when the host deletes the lobby.
c. Users select song from the Spotify search results, the server checks the database

to ensure the song is not on the queue. If the song is on the queue than the server
asks the user to enter a new song. Otherwise the song is added at the bottom of
the playlist.

d. The playlist can be manipulated by the host user.

5. Use Case: Add a song

Description: The host or the guests adds a song to the playlist.
Actors: Host, guests, server

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

13

Main Success Scenario:
a. User search a song, the Spotify returns search results, the host or the guests,

select a song to be added to the playlist.

6. Use Case: Vote
Description: The users can up or down vote song.
Actors: Guest, Host, Server, Database
Main Success Scenario:

a. Users (host or guest) can up or down vote any song on the playlist. Only
constrain being each user get to vote only once in each song.

b. The server updates the vote count in database.
c. Song moves and up or down in the playlist according to the vote.

7. Use Case: Playlist control

Description: Host control the playlist.
Actors: Database, Server, Host
Main Success Scenario:

a. Host can delete a song.
b. Host also can skip a song even if it is playing at the time.

8. Use Case: Block user

Description: Host can remove or block a user.
Actors: Host, database, user
Main Success Scenario:

a. Host has the ability the remove a user.
b. Host also have the ability to unblock a user.

9. Use Case: Leave a party

Description: User leaves a party.
Actors: User.
Main Success Scenario:

a. User may leave a party at any time.
b. User may join the same party back using the lobby code.

10. Use Case: Delete a lobby

Description: Host deletes a lobby.
Actors: Host, server, database
Main Success Scenario:

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

14

a. Host leaves the party or chooses to close the lobby.
b. Server clears the database, deletes the playlist.
c. Server clears the lobby code from the database and it is available to next host.

7.4 Activity Diagrams

7.4-A Splash Screen Activity Diagram

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

15

The above activity diagram shows the user’s options upon application
startup. If the user is hosting a party, they will need to create a new party, or
lobby. After selecting the host option, a four digit code will be generated for the
new lobby. As covered in functional requirements, (Section 5.1 g) this will be a
four digit number. The digit will be displayed to the host, so that they can share
the code with their guests. From this screen, the host will enter a nickname that
will serve as an identifier to all guests of the party. Once the nickname has been
entered, the host will be taken to the main/home page of the Juked app.

Conversely, if a user opens the app and wants to join an existing party,
they will select the guest option. The user will then be prompted to enter the four
digit lobby code that was obtained by the party host. Once a valid party code has
been entered, the guest will be prompted to enter a nickname, just like with a
host. Once the guest has entered their chosen nickname, they will be taken to an
abridged version of the home page.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

16

7.4-B Host Home Page Activity Diagram

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

17

The diagram above shows the activities available to a host in the Juked
application. All available actions will be available from the the host’s ‘home page’.
The home page will display the current queue of songs that have been selected
by the party guests, and different buttons to allow interaction with the app. The
host will have a few more privileges than the guest to allow more control over the
party and music selection.

The host will have 8 different options from the home screen:
1. Add service

The host will choose to add a streaming service. The host
will then choose to log in to their Spotify or Soundcloud account.
Once the host has successfully logged in to a streaming service,
they will be redirected back to the home screen.

2. Skip song
While any song is playing, the host has an ultimate “veto

power”, and can choose to skip the song. The song will stop
playing immediately and the next song in the queue will begin
playing.

3. Toggle play
If the host needs needs to stop the music, they can choose

to pause playback. If the music is paused, the host can resume
playback right where the music left off.

4. Search song
The user can type in the name of an artist, song, or album

into a search bar. The Juked app will search through the libraries
of the streaming services that have been added (Spotify and/or
Soundcloud) and the results matching the search will be
displayed. The user can then choose which exact song and which
streaming service they wish to use. Once a song has been
selected, the Juked app will then ensure that the user does not
already have a song selection in the queue, and that the selected
song has not already been placed in the queue by another user.
(If a song has already been played during a party, it can be
chosen again, so long as it is not currently in the queue). If either
of these conditions fail, the user will receive an error notification
and be redirected to the search screen so that they may search
for another song, or wait until the have no selections in the queue.
Once the song has successfully been selected, the user is
redirected to the home screen.

5. Upvote song
The user has the option to vote once on each song. If the

user likes the song choice, they can choose to upvote it. When the
user selects to upvote, the Juked app will check to ensure that the
user has not already voted on the song. If the user has already
voted on the song, no change will be made. Once the user has

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

18

successfully voted, the song’s vote count will be incremented, and
the song will move up the queue until it reaches a song with a
higher vote count.

6. Downvote song
The downvote option works identically to the upvote

option, except that the vote count will be decremented, and the
song will be moved down the queue until a song with a lower vote
count is found.

7. View song history
The user can select the ‘View Song History’ option to view

a list of all the songs that have been played since the party was
created.

8. End party
The host can choose the end a party. This will remove all

users from the party and all songs from the queue. All of the song
and user information from the party will be lost. Once a party has
been ended, the host and guests will be redirected to the splash
screen.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

19

7.4-C Guest Home Page Activity Diagram

The above diagram shows the activities available from the guest

home screen. The guest has 5 options to choose from, and 4 of these are
identical to the hosts options (see 7.4-B description).

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

20

1. Search songs - identical to host option 4
2. Upvote song

Identical to host option 5
3. Downvote song

Identical to host option 6
4. View song history

Identical to host option 7
5. Leave party

The guest may choose to leave a party at any time. When
a guest leaves a party, their song choice is removed from the
queue and the user is redirected to the splash screen.

 7.5 Prospective Database Setup
Users

User_ID User_Nickname Host

12345 “lauraphillips” true

Playlist

Song_URI User_ID VoteCount

song_12345 12345 2

Votes

User_ID Song_URI UpOrDown

12345 song_12345 “up”

 The above is a basic overview of the SQL database setup for the Juked application.
When a host creates a lobby, the above tables will be created. Each time a user joins a party,
the server will be contacted and a new user will be generated. The User_ID will be auto-
generated and unique. The User_nickname will correspond with the nickname entered by the
user. The Host column will be a boolean value identifying whether the user is a host (true) or a
guest (false). The playlist database will keep track of the queue. This table will contain an entry
for each song added by party guests. The table will record the song URI (provided by the
Spotify or Soundcloud API), the User_ID for the user that selected the song, and the voteCount
integer. This table will allow the functionality to make sure a user does not add more than one
song (by checking for the User_ID), and ensure that the same song is not added twice (by
checking the Song_URI). The VoteCount column will keep a running overall score for each
song, so that it can be placed in the queue accordingly. The final table keeps records of the
votes. The columns here (User_ID, Song_URI, and UpOrDown) ensure that a user can only
vote on a song once. The UpOrDown column will allow the user to change their vote once it has

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

21

been selected, but will not allow for multiple of the same vote; a user can not continually upvote
a song, but they can switch an upvote to a downvote. With all of this information being stored on
the Juked server, it can easily be retrieved to achieve the desired functional requirements.

8.0 Sequence Diagrams

 8.1 - Create Lobby

When a user intending to be a host clicks the “Create Lobby” button it will in turn
send a request to the server to create a lobby/playlist as well as generate and a host
object and a unique four digit access code(i.e., 4353) that will enable other users to join
the session. The database will ensure that the four digit code that is generated is unique.
This ensures that multiple parties will not have the same identifier, and their songs/users
will not overlap.

Once a unique code is generated and all lobby parameters(methods, objects,
classes, etc) are created without error, the host will then be prompted to enter a
username that is associated with their unique deviceID. They will also be prompted to
connect their Spotify account.

8.2 - Create Playlist

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

22

After a user clicks the “Create Lobby” button, a playlist is automatically created on the
backend. An ArrayList is created in the program while the server queries the database.
The playlist’s ArrayList will store all the songs that have been selected through their
respective searches. The ArrayList holds a song object and is populated after each
round of song choosing.

8.3 - Create User

A user object is created when a user clicks the “Join Lobby” button. This in turn
invokes the createUser method. This method is passed the “nickname” that was entered
by the user, and their device ID. The device ID can be used as a unique identifier for the
user. This user is then sent to the server. The server takes this information and adds the
user to the lobby.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

23

8.4 - User Joins a Lobby

When a user attempts to join a lobby with a provided access code, they will

select the “Join Lobby” button. This will then prompt the user to enter the four digit lobby
code that they have obtained from the party host. This code is then sent to the server for
validation. If such a lobby exists that is associated with the passed lobby code, it will
then return as a success. In this case, the application will send the user to the party
lobby, also known as the playlist screen. From here, they will then be prompted to enter
a username that will be associated with their unique deviceID. Otherwise, an error
message will be displayed- more than likely from an invalid lobby access code.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

24

8.5 - Search For Song

 Search for a song: The user clicks the search bar, which pulls up qwerty
keyboard. Using the keyboard, user enters query. The app sends this query to Spotify API.
Spotify performs the search and the results are displayed on the app’s screen. User than may
choose a song among the search results, the search loop then terminates. User may choose to
perform a new search or exit out of the search all together.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

25

8.6 - Add A Song To the Queue

 This task is performed at the backend. User is not aware of the process in this
sequence. The process starts after the user selects a song. App sends the song to the
backend server. Backend server checks the database to ensure the song has not been
added previously. If the song exists in the database, then user is asked to select a
different song, else the song is placed in the database playlist.

8.7 - Remove Song from Queue

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

26

 If the host wishes, they have the ability to remove a song from the queue before
it plays. The host can click a remove song button for the corresponding song. When this
button is pressed, Juked will contact the server with the song identifier. The server will in
turn query the database to remove any entries in the song queue matching that song
identifier. Once the song has been removed, the server will send the updated queue of
songs. The app will then display the updated queue on all devices for users in that lobby,
successfully removing the song and preventing it from being played.

8.8 - Host Skips a Song

 If the host wants to skip the song that is currently playing, the app will contact the
NodeJS server with skip request and the song ID. The server will first contact the Spotify
app using the API to skip to the next song. The server will then contact the database to
remove the skipped song from the queue, using the song’s identifier. The database entry
matching the skipped song will be deleted, and the updated queue will be sent back to
the server. The server will then send the updated song queue to the users in the lobby
and display the queue on their devices.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

27

8.9 - Check If User Has Voted

 A user should only have the option to vote once per song in the queue. Without this
functionality, a user could flood a song with upvotes or downvotes, and the queue wouldn’t
accurately reflect the choices of the group, but rather that one individual. That being said, when
a Juked user clicks the upvote or downvote button for the song, the server is contacted with the
song ID and the voter’s ID. The server will query the database for a vote that matches the user
ID AND song ID. If the database returns an entry, this means that the user has already voted on
that specific song, and the application will display an error message. If the database returns no
entries, the vote is valid and the vote sequence begins.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

28

8.10 - Leave Lobby

When user clicks leave lobby, the app sends a message to the server to begin the
process of disconnecting the user. The server accesses the database and has the
database clear the user’s playlist information. The playlist information is cleared which
consisted of the user’s votes for songs and their song in the playlist. Once that
information is cleared, the database returns back to the server. The server sends a
message to the application that disconnecting is now safe, and so the application
disconnects, sending the user back to the lobby screen. Once the user is successfully
disconnected, the application notifies the server. The server then has the database clear
out the rest of the user information the database. Once that is done, the database
returns to the server and the program continues as normal.

Francisco Rovelo, Laura Phillips, John Mills, Mohammed Rahman, Noah Patton

29

8.11 - Destroy Lobby

When the host clicks leave lobby, the app passes the shutdown server request to
the server. The server gets the user list from the database. The server then uses that
information to pass a disconnect prompt to each user’s connected application. Each user
is returned to the connection screen. When each user is disconnected, it informs the
server. When all users are disconnected, the server has the database close all the open
entries which include the playlist, users, and lobbyID. Once that is done, the database
informs the server that it is shutdown, freeing the lobbyID for future lobbies.

