JUKED

Design Presentation

Francisco Rovelo, Laura Phillips, John
Mills, Noah Patton, M Rahman

Problem Definition

Most parties have one dj that is the dictator of the
music.

Juked gives power to the people allowing for
guests to control the music.

Let the guests search, pick, and choose songs to
be played at the party.

Allows for upvotes to move a song up in the
queue and be played sooner.

Allows for downvotes to remove a song entirely,
rendering that one guy who plays barbie girl over
and over powerless.

Updated Scope

The scope has been degraded to simply a Spotify
implementation.
However, for modularity we have considered
using platform objects (i.e., Spotify Object)

This object will contain all necessary methods

and classes for that object.
Spotify Song URL
Spotify Song URI
Spotify Wrapper Functions
This was done for the purpose of time. If we have

time to implement other services, 1t will be easier
to add thic wav

Host Creates A Lobby

(User
OOOOOOOOO ‘CREATE LOBBY] H
1 User clicks "create lobby" button 1.1: APP ends reque:

:
L to generate lobby al ndoode 111 Update DATABASE with c-wl oboy e 1ry
name H with Host parameter:

1.1.2: Return a non-duplicate lobby code Update DATABASE
with lobby parameters

R et

. 1.2: Return a lobby and
<----.2% SendHostto playlistsereen non-dupli cal lobdy code

[
|

O ®@ O O O

The host will click “Create Lobby” which in turn
sends a request to create a lobby/playlist and =
return the lobby as well as a unique lobby entry

code.

User Joins A Lobby

er 1
__ User clicks "Join Lobby" button and .
4 enters a lobby code

> 1.1: APP sends lobby code to be verified: 1.1.1: Check DATABASE to verify

name if code correlates to a valid lobby

>

..
>

< -----------------------------------

" " e ——————
2. Send User to playlist screen or display 1.2 Return a lobby if if successiul or
error message '

NPl failure message

When a User attempts to join a lobby, they will
enter a code which 1s sent to the DATABASE for
validation. If such a lobby exist, it returns success
and sends the user to the lobby. Otherwise, error
message.

1.1.2: Return rather successful or failure |_| ' Check DATABASE

Creation of Playlist

Lobby Server Database

h
createLobby() ‘ﬁ

| 1. Create Queue

2. Ask server to .

| |
|
|
|
query database
2.1 Create new playlist
in database -
3. Return Pass or Fail
<
|
|

Y

When a new lobby i1s created, a playlist 1s
automatically created. An ArrayList 1s created in
the program, then the server queries the database.
A new playlist table will then be created.

Creation of User

Lobby

1. call createUser() form lobby

Server Database

>

2.2 New User has access
to app functionality

L

1.1 Server queries database
and creates new user in database

A

A user object is created when a user joins a lobby.
The method createUser is sent to the server with

2.1 Returns pass or fail
< -----..21Retumns passorfal

all of the information that is input from join

lobby. The server queries the database and adds

the new user.

Host Removes a Song
3

Hdst

1. click remove song button
>

1.1 send URI of song to be deleted ' . '
> 1.1.1 Query database with song URI

A

|
|
|
[|

P

] 1.1.1.1remove DB entry with matching URI

1.2 display updated song list | | o _____112reunupdatedsonglist I
<.

When a Host removes a Song from the quelie, the app will contact

the server, and the server will contact the database with the song ms
identifier. The database will remove the song from the table of .===
queued songs, and the updated queue will be returned and sEEE
displayed to the app screen - .===
EEEEE
EEE
1
EEEE

Host Skips a Song
}

Hast

1. click skip song button

I 1.1 send Spotify skip request : il
‘
L] 1.2 skip song

2.1 send skipped song URI

» 2.1.1 query database with
skipped song URI

2.1.1 Delete skipped song
2.1.2 return updated queue

2.2 display updated queue < ST Sy e T

A
H
H
HE
EEEENEENEEEN
EEEEEEEEEEEN
EEEEEEEEEEEE

o - e
' ' |

| | | ..
If the host wants to skip the song that is currently playing, the app 1
will contact the Spotify to skip to the next song. The app will then l===
contact the server with the skipped song’s identifier. The database . -
entry matching the skipped song will be deleted, and the updated EEEE
: : ENEEN
queue will be displayed EEE
N
EEEE

Check If User Has Voted
!

1. click vote button

1.1 send user ID and song ID -

1.1.1 query count of votes with
user ID and song ID

A

1.1.2 return count of votes
< ..

alt [Count=0]

1.2 return (allow vote)
< """"""""""""""""""""""""" E N

i
H
H
HE
EEEENEENEEEN
EEEEEEEEEEEN
EEEEEEEEEEEE

[Count !=0]

1.3 display error message

When a user tries to vote on a song, the app will send the user’s .===

ID and the song ID to the server, which will contact the database. 0 ENE
If there is a vote matching the user AND song ID, then an error s EEm
message 1s displayed. Otherwise, the vote is allowed. =

Search for a song
3

Actor

}
}.
|
|
(1 |
(1|
[| |

loop
% 4,

User enter query in the search bar 1.1

Y

\

App sends query to Spotify

2. Spotify return search resutls to app

<" User sclects a song and sent to add song | EEEN

When user search for a song, the passes the query to spotify, returns the
result to app. User than have option to choose, discard or redo. T

Add a song

i App Server DB
Actor :
1 loop /J
> 1.1
User selects a song >
App sends song data to server 1.2 o
» Check
Request song to be added if song
T—l exists
" 2 Fails, server is notified |
77777207 Kpp nofifies the user falure]
and ask to add a new song Song
added

-
3.1 App receives success notification

<
3.2 user sent to lobby

< __________________________________
3. Server is notified success

<«

User selects a song, the database gets updated and user is sent to lobby

or requested to select another song.

L.eave Lo

bby

X

'
User
'

'

App

Server

o
1. Click "Leave Lobby”

»
>

Il
-

£.2 Rokem Jo Lobby Connect Screen

1.1 Disconnect User

2.1 Return Safe To Disconnect

>

DB

3. User Disconnect Success
-

1.2 Clear User Playlist Info

2. Return Info Cleared

R

3.1 Clear User Info

Return User Cleared

<

| 1.3 Clear User Votes

| 1.4 Clear User Song In Playlist

|3.2 Clear User Info

When user clicks leave lobby, the app passes the request to the server,
which queries the database, then returns to the server to disconnect the
app before fully clearing the database.

Clofﬂe I bAb 7 i

Host

——] 1. Click'Leave Lobby' _
> 1.1 Request Server Shutdown

v

1.2 Get User List

2 Return User List

. D i
3_.% Return to Connect Screen P 2.1 Disconnect Users From Lobby
3 Send User Connect Success i
> 3.1 Close DB Entries .
3.2 Clear Playlist
j 3.3 Clear Users
3.4 Clear LobbylD
4 Return DB Close
<.

When host clicks leave lobby, the app passes the request to the server,
which gathers user list from DB to disconnect users from lobby and
then close/clear the DB entries.

Class Diagram

Playlist

Lobby

- songList: ArrayList<Song=

- lobbySize: int
- lobbyCode: int

+ users[]: int

+ createLobby(dID: String, userlD: String): int
+ joinLobby(lobbyID: int, dID, String, userID: String): void
+ destroyLobby(): void

+ leaveLobby(dID: int): void

+ createPlaylist(): Playlist

+ createUser(dID: String, userlD: String): User
+ getLobbyID(): int

+ setLobbylID(id: int): void

+ getlLobbySize(): int

+ setLobbySize(size: int): void

+ addUser(): void

+ getLobbySize(): int

+ search(song: String): void

+ addSong(searchResult): void
+ removeSong(song: String): void
+ skipSong(song: String): void

+ play(song: String): void

+ pause(song: String): void

User

- host: boolean
- devicelD: String

- userlD: String

Chooses

+ hasVoted(song: String): boolean
+ getHost(): boolean

+ setHost(flag: boolean): void

+ getDevicelD(): String

+ setDevicelD(id: String): void

+ getUserlD(id: String): void

+ setUserlD(id: String): void

Song

- songLength: int
- songAdder: User
- songlD: String

- downvotes: int

- upvotes: int

- voteBalance; int
- numOfVotes: int
- song: String

- boolean isHost;

+ getSongLength(): int

+ setSongLength(length: int): void
+ getsongAdder(): User

+ setSongAdder(user: User): void
+ getSonglD(): String

+ setSongID(id: String): void

+ getDownvotes(): int

+ setDownvotes(votes: int): void
+ getUpvotes(): int

+ setUpvotes(votes: int): void

+ getVoteBalance(): int

+ setVoteBalance(votes: int): void
+ getNumOfVotes(): int

+ setNumOfVotes(votes: int): void
+ getSong(): String

+ setSong(song: String): void

+ getisHost(): boolean

+ setisHost(flag: boolean): void

Present Priority

Best to have less option but better performance- just focus on Spotify, with the
options open for SoundCloud and Youtube in the future.

Get a working app, then each member picks an area to smooth out the rough edges.
A little bit everyday gets more done in a week then trying to code the whole day.
Pick a time everyday for team members to meet and collaborate.

Consistency.

Time management.

We are at a stopping point to make the best app possible (we will never have an
app then) and work on the present best scenario.

Summary

Confident about the design of the application and
the backend.

Confidence in our ability to get a working
product soon and add polish later.

Energized and excited about the product,
something we will actually use ourselves

