
JUKED
Design Presentation

Francisco Rovelo, Laura Phillips, John
Mills, Noah Patton, M Rahman

Problem Definition
● Most parties have one dj that is the dictator of the

music.
● Juked gives power to the people allowing for

guests to control the music.
● Let the guests search, pick, and choose songs to

be played at the party.
● Allows for upvotes to move a song up in the

queue and be played sooner.
● Allows for downvotes to remove a song entirely,

rendering that one guy who plays barbie girl over
and over powerless.

Updated Scope
● The scope has been degraded to simply a Spotify

implementation.
● However, for modularity we have considered

using platform objects (i.e., Spotify Object)
○ This object will contain all necessary methods

and classes for that object.
■ Spotify Song URL
■ Spotify Song URI
■ Spotify Wrapper Functions

● This was done for the purpose of time. If we have
time to implement other services, it will be easier
to add this way.

Host Creates A Lobby

● The host will click “Create Lobby” which in turn
sends a request to create a lobby/playlist and
return the lobby as well as a unique lobby entry
code.

User Joins A Lobby

● When a User attempts to join a lobby, they will
enter a code which is sent to the DATABASE for
validation. If such a lobby exist, it returns success
and sends the user to the lobby. Otherwise, error
message.

Creation of Playlist

● When a new lobby is created, a playlist is
automatically created. An ArrayList is created in
the program, then the server queries the database.
A new playlist table will then be created.

Creation of User

● A user object is created when a user joins a lobby.
The method createUser is sent to the server with
all of the information that is input from join
lobby. The server queries the database and adds
the new user.

Host Removes a Song

● When a Host removes a song from the queue, the app will contact
the server, and the server will contact the database with the song
identifier. The database will remove the song from the table of
queued songs, and the updated queue will be returned and
displayed to the app screen

Host Skips a Song

● If the host wants to skip the song that is currently playing, the app
will contact the Spotify to skip to the next song. The app will then
contact the server with the skipped song’s identifier. The database
entry matching the skipped song will be deleted, and the updated
queue will be displayed

Check If User Has Voted

● When a user tries to vote on a song, the app will send the user’s
ID and the song ID to the server, which will contact the database.
If there is a vote matching the user AND song ID, then an error
message is displayed. Otherwise, the vote is allowed.

Search for a song

When user search for a song, the passes the query to spotify, returns the
result to app. User than have option to choose, discard or redo.

Add a song

User selects a song, the database gets updated and user is sent to lobby
or requested to select another song.

Leave Lobby

When user clicks leave lobby, the app passes the request to the server,
which queries the database, then returns to the server to disconnect the
app before fully clearing the database.

Close Lobby

When host clicks leave lobby, the app passes the request to the server,
which gathers user list from DB to disconnect users from lobby and
then close/clear the DB entries.

Class Diagram

Present Priority
❖ Best to have less option but better performance- just focus on Spotify, with the

options open for SoundCloud and Youtube in the future.
❖ Get a working app, then each member picks an area to smooth out the rough edges.
❖ A little bit everyday gets more done in a week then trying to code the whole day.
❖ Pick a time everyday for team members to meet and collaborate.
❖ Consistency.
❖ Time management.
❖ We are at a stopping point to make the best app possible (we will never have an

app then) and work on the present best scenario.

Summary

▪ Confident about the design of the application and
the backend.

▪ Confidence in our ability to get a working
product soon and add polish later.

▪ Energized and excited about the product,
something we will actually use ourselves

